15 research outputs found

    Pharmacokinetics of esomeprazole in goats (Capra aegagrus hircus) after intravenous and subcutaneous administration

    Get PDF
    Background: Stressed and hospitalized goats are at risk of developing abomasal (gastric) ulceration, but there is a paucity of pharmacokinetic studies for proton pump inhibiting drugs, such as, esomeprazole in goats. Objectives: The objectives for this study were to estimate plasma pharmacokinetic parameters for esomeprazole in adult goats after intravenous (IV) and subcutaneous (SQ) administration. A secondary objective was to describe the plasma kinetics of the metabolite esomeprazole sulfone after IV and SC administration in goats. Materials and methods: Esomeprazole was administered to 5 adult goats in a crossover study at doses of 1 mg/kg IV or 2 mg/kg SC. Plasma samples were collected over 36 h and analyzed via reverse phase HPLC to determine concentrations of esomeprazole and esomeprazole sulfone. Pharmacokinetic parameters were derived via non-compartmental analysis. Results: Following IV administration, mean values for plasma clearance (Cl), elimination half-life [T1/2 (λz)], C0, and volume of distribution (Vz) of esomeprazole were estimated at 24.9 mL/min/kg, 6 min, 2.324 μg/mL, and 0.23 L/kg, respectively. After SC administration elimination half-life, maximum concentration (Cmax) and time to maximum concentration (Tmax) of esomeprazole were estimated at 29 min, 1.038 μg/mL, and 22 minutes respectively. Maximum concentrations of the sulfone metabolite were 32 and 18 ng/mL after IV and SC administration. Conclusion: Esomeprazole was rapidly eliminated from plasma after both IV and SC injection in goats. The elimination half-life in goats appears to be shorter than reported in dogs, as well as less than that reported for pantoprazole in goats. The sulfone metabolite was detected and also rapidly eliminated from the plasma after both IV and SC administration. Additional pharmacodynamic investigations are needed to determine the efficacy of esomeprazole on abomasal (gastric) acid suppression in goats and could include larger doses or additional routes of administration

    Soil Moisture and Soil-Litter Mixing Effects on Surface Litter Decomposition: A Controlled Environment Assessment

    No full text
    Recent studies suggest the long-standing discrepancy between measured and modeled leaf litter decomposition in drylands is, in part, the result of a unique combination of abiotic drivers that include high soil surface temperature and radiant energy levels and soil-litter mixing. Temperature and radiant energy effects on litter decomposition have been widely documented. However, under field conditions in drylands where soil-litter mixing occurs and accelerates decomposition, the mechanisms involved with soil-litter mixing effects are ambiguous. Potential mechanisms may include some combination of enhanced microbial colonization of litter, physical abrasion of litter surfaces, and buffering of litter and its associated decomposers from high temperatures and low moisture conditions. Here, we tested how soil-litter mixing and soil moisture interact to influence rates of litter decomposition in a controlled environment. Foliar litter of two plant species (a grass [Eragrostis lehmanniana] and a shrub [Prosopis velutina]) was incubated for 32 weeks in a factorial combination of soil-litter mixing (none, light, and complete) and soil water content (2, 4, 12% water-filled porosity) treatments. Phospholipid fatty acids (PLFAs) were quantified one week into the experiment to evaluate initial microbial colonization. A complementary incubation experiment with simulated rainfall pulses tested the buffering effects of soil-litter mixing on decomposition. Under the laboratory conditions of our experiments, the influence of soil-litter mixing was minimal and primarily confined to changes in PLFAs during the initial stages of decomposition in the constant soil moisture experiment and the oscillating soil moisture conditions of the rainfall pulse experiment. Soil-litter mixing effects on CO2 production, total phospholipid concentrations, and bacterial to total PLFA ratios were observed within the first week, but responses were fairly weak and varied with litter type and soil moisture treatment. Across the entire 32-week incubation experiment, soil moisture had a significant positive effect on mass loss, but soil-litter mixing did not. The lack of strong soil-litter mixing effects on decomposition under the moderate and relatively constant environmental conditions of this study is in contrast to results from field studies and suggests the importance of soil-litter mixing may be magnified when the fluctuations and extremes in temperature, radiant energy and moisture regimes common dryland field settings are in play

    Pharmacokinetics of Pantoprazole and Pantoprazole Sulfone in Goats After Intravenous Administration: A Preliminary Report

    Get PDF
    Background: Ruminant species are at risk of developing abomasal ulceration, but there is a lack of pharmacokinetic data for anti-ulcer therapies, such as the proton pump inhibitor pantoprazole, in goats. Objective: The primary study objective was to estimate the plasma pharmacokinetic parameters for pantoprazole in adult goats after intravenous administration. A secondary objective was to describe the pharmacokinetic parameters for the metabolite, pantoprazole sulfone, in goats. Methods: Pantoprazole was administered intravenously to six adult goats at a dose of 1 mg/kg. Plasma samples were collected over 36h and analyzed via reverse phase high performance liquid chromatography for determination of pantoprazole and pantoprazole sulfone concentrations. Pharmacokinetic parameters were determined by non-compartmental analysis. Results: Plasma clearance, elimination half-life, and volume of distribution of pantoprazole were estimated at 0.345 mL/kg/min, 0.7 h, and 0.9 L/kg, respectively following IV administration. The maximum concentration, elimination half-life and area under the curve of pantoprazole sulfone were estimated at 0.1 μg/mL, 0.8 h, and 0.2 hr*μg/mL, respectively. The global extraction ratio was estimated 0.00795 ± 0.00138. All animals had normal physical examinations after conclusion of the study. Conclusion: The reported plasma clearance for pantoprazole is lower than reported for foals, calves, and alpacas. The elimination half-life appears to be < that reported for foals and calves. Future pharmacodynamic studies are necessary for determination of the efficacy of pantoprazole on acid suppression in goats.This article is published as Smith, Joe S., Jonathan P. Mochel, Windy M. Soto-Gonzalez, Rebecca R. Rahn, Bryanna N. Fayne, Olivia G. Escher, Anastasia M. Geletka, Lainey E. Harvill, Joan B. Bergman, and Sherry Cox. "Pharmacokinetics of pantoprazole and pantoprazole sulfone in goats after intravenous administration: a preliminary report." Frontiers in Veterinary Science 8 (2021): 744813. DOI: 10.3389/fvets.2021.744813. Copyright 2021 Smith, Mochel, Soto-Gonzalez, Rahn, Fayne, Escher, Geletka, Harvill, Bergman and Cox. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Pharmacokinetics of esomeprazole in goats (Capra aegagrus hircus) after intravenous and subcutaneous administration

    No full text
    Background: Stressed and hospitalized goats are at risk of developing abomasal (gastric) ulceration, but there is a paucity of pharmacokinetic studies for proton pump inhibiting drugs, such as, esomeprazole in goats. Objectives: The objectives for this study were to estimate plasma pharmacokinetic parameters for esomeprazole in adult goats after intravenous (IV) and subcutaneous (SQ) administration. A secondary objective was to describe the plasma kinetics of the metabolite esomeprazole sulfone after IV and SC administration in goats. Materials and methods: Esomeprazole was administered to 5 adult goats in a crossover study at doses of 1 mg/kg IV or 2 mg/kg SC. Plasma samples were collected over 36 h and analyzed via reverse phase HPLC to determine concentrations of esomeprazole and esomeprazole sulfone. Pharmacokinetic parameters were derived via non-compartmental analysis. Results: Following IV administration, mean values for plasma clearance (Cl), elimination half-life [T1/2 (λz)], C0, and volume of distribution (Vz) of esomeprazole were estimated at 24.9 mL/min/kg, 6 min, 2.324 μg/mL, and 0.23 L/kg, respectively. After SC administration elimination half-life, maximum concentration (Cmax) and time to maximum concentration (Tmax) of esomeprazole were estimated at 29 min, 1.038 μg/mL, and 22 minutes respectively. Maximum concentrations of the sulfone metabolite were 32 and 18 ng/mL after IV and SC administration. Conclusion: Esomeprazole was rapidly eliminated from plasma after both IV and SC injection in goats. The elimination half-life in goats appears to be shorter than reported in dogs, as well as less than that reported for pantoprazole in goats. The sulfone metabolite was detected and also rapidly eliminated from the plasma after both IV and SC administration. Additional pharmacodynamic investigations are needed to determine the efficacy of esomeprazole on abomasal (gastric) acid suppression in goats and could include larger doses or additional routes of administration.This article is published as Fladung R, Smith JS, Hines MT, Soto-Gonzalez WM, Fayne B, Rahn RR, Escher OG, Harvill L, Bergman J, Garcia JD, Kreuder AJ and Cox S (2022) Pharmacokinetics of esomeprazole in goats (Capra aegagrus hircus) after intravenous and subcutaneous administration. Front. Vet. Sci. 9:968973. DOI: 10.3389/fvets.2022.968973. Copyright 2022 Fladung, Smith, Hines, Soto-Gonzalez, Fayne, Rahn, Escher, Harvill, Bergman, Garcia, Kreuder and Cox. Attribution 4.0 International (CC BY 4.0). Posted with permission

    Pharmacokinetics of Pantoprazole and Pantoprazole Sulfone in Goats After Intravenous Administration: A Preliminary Report

    Get PDF
    Background: Ruminant species are at risk of developing abomasal ulceration, but there is a lack of pharmacokinetic data for anti-ulcer therapies, such as the proton pump inhibitor pantoprazole, in goats. Objective: The primary study objective was to estimate the plasma pharmacokinetic parameters for pantoprazole in adult goats after intravenous administration. A secondary objective was to describe the pharmacokinetic parameters for the metabolite, pantoprazole sulfone, in goats. Methods: Pantoprazole was administered intravenously to six adult goats at a dose of 1 mg/kg. Plasma samples were collected over 36h and analyzed via reverse phase high performance liquid chromatography for determination of pantoprazole and pantoprazole sulfone concentrations. Pharmacokinetic parameters were determined by non-compartmental analysis. Results: Plasma clearance, elimination half-life, and volume of distribution of pantoprazole were estimated at 0.345 mL/kg/min, 0.7 h, and 0.9 L/kg, respectively following IV administration. The maximum concentration, elimination half-life and area under the curve of pantoprazole sulfone were estimated at 0.1 μg/mL, 0.8 h, and 0.2 hr*μg/mL, respectively. The global extraction ratio was estimated 0.00795 ± 0.00138. All animals had normal physical examinations after conclusion of the study. Conclusion: The reported plasma clearance for pantoprazole is lower than reported for foals, calves, and alpacas. The elimination half-life appears to be \u3c that reported for foals and calves. Future pharmacodynamic studies are necessary for determination of the efficacy of pantoprazole on acid suppression in goats

    MUC1 cell surface mucin is a critical element of the mucosal barrier to infection

    No full text
    Cell surface mucin glycoproteins are highly expressed by all mucosal tissues, yet their physiological role is currently unknown. We hypothesized that cell surface mucins protect mucosal cells from infection. A rapid progressive increase in gastrointestinal expression of mucin I (Muc1) cell surface mucin followed infection of mice with the bacterial pathogen Campylobacter jejuni. In the first week following oral infection, C jejuni was detected in the systemic organs of the vast majority of Mucl (-)/(-) mice but never in Muc1(+)/(+) mice. Although C jejuni entered gastrointestinal epithelial cells of both Mucl(-)/(-) and Mucl (+)/(+) mice, small intestinal damage as manifested by increased apoptosis and enucleated and shed villous epithelium was more common in Muc1(-)/(-) mice. Using radiation chimeras, we determined that prevention of systemic infection in wild-type mice was due exclusively to epithelial Mucl rather than Mucl on hematopoietic cells. Expression of MUC1-enhanced resistance to C. jejuni cytolethal distending toxin (CDT) in vitro and CDT null C. jejuni showed lower gastric colonization in Muc1(-)/(-) mice in vivo. We believe this is the first in vivo experimental study to demonstrate that cell surface mucins are a critical component of mucosal defence and that the study provides the foundation for exploration of their contribution to epithelial infectious and inflammatory diseases

    Protocol for a sequential, prospective metaanalysis to describe coronavirus disease 2019 (COVID-19) in the pregnancy and postpartum periods

    Get PDF
    We urgently need answers to basic epidemiological questions regarding SARS-CoV-2 infection in pregnant and postpartum women and its effect on their newborns. While many national registries, health facilities, and research groups are collecting relevant data, we need a collaborative and methodologically rigorous approach to better combine these data and address knowledge gaps, especially those related to rare outcomes. We propose that using a sequential, prospective meta-analysis (PMA) is the best approach to generate data for policy- and practice-oriented guidelines. As the pandemic evolves, additional studies identified retrospectively by the steering committee or through living systematic reviews will be invited to participate in this PMA. Investigators can contribute to the PMA by either submitting individual patient data or running standardized code to generate aggregate data estimates. For the primary analysis, we will pool data using two-stage meta-analysis methods. The meta-analyses will be updated as additional data accrue in each contributing study and as additional studies meet study-specific time or data accrual thresholds for sharing. At the time of publication, investigators of 25 studies, including more than 76,000 pregnancies, in 41 countries had agreed to share data for this analysis. Among the included studies, 12 have a contemporaneous comparison group of pregnancies without COVID-19, and four studies include a comparison group of non-pregnant women of reproductive age with COVID-19. Protocols and updates will be maintained publicly. Results will be shared with key stakeholders, including the World Health Organization (WHO) Maternal, Newborn, Child, and Adolescent Health (MNCAH) Research Working Group. Data contributors will share results with local stakeholders. Scientific publications will be published in open-access journals on an ongoing basis
    corecore